High-accuracy Optimization by Parallel Iterative Discrete Approximation and GPU Cluster Computing
نویسنده
چکیده
High-accuracy optimization is the key component of time-sensitive applications in computer sciences such as machine learning, and we develop single-GPU Iterative Discrete Approximation Monte Carlo Optimization (IDAMCS) and multi-GPU IDA-MCS in our previous research. However, because of the memory capability constrain of GPUs in a workstation, single-GPU IDA-MCS and multiGPU IDA-MCS may be in low performance or even functionless for optimization problems with complicated shapes such as large number of peaks. In this paper, by the novel idea of parallelizing Iterative Discrete Approximation with CUDA-MPI programming, we develop the GPU cluster version (GPU-cluster) of IDA-MCS with two different parallelization strategies: Domain Decomposition and Local Search, under the style of Single Instruction Multiple Data by CUDA 5.5 and MPICH2, and we exhibit the performance of GPU-cluster IDA-MCS by optimizing complicated cost functions. Computational results show that, by the same number of iterations, for the cost function with millions of peaks, the accuracy of GPU-cluster IDA-MCS is approximately thousands of times higher than that of the conventional method Monte Carlo Search. Computational results also show that, the optimization accuracy from Domain Decomposition IDA-MCS is much higher than that of Local Search IDA-MCS.
منابع مشابه
SIZE AND GEOMETRY OPTIMIZATION OF TRUSS STRUCTURES USING THE COMBINATION OF DNA COMPUTING ALGORITHM AND GENERALIZED CONVEX APPROXIMATION METHOD
In recent years, the optimization of truss structures has been considered due to their several applications and their simple structure and rapid analysis. DNA computing algorithm is a non-gradient-based method derived from numerical modeling of DNA-based computing performance by new computers with DNA memory known as molecular computers. DNA computing algorithm works based on collective intelli...
متن کاملSolving the Flexible Job Shop Problem on Multi-GPU
We propose the new framework of the distributed tabu search metaheuristic designed to be executed using a multi-GPU cluster, i.e. cluster of nodes equipped with GPU computing units. We propose a hybrid single-walk parallelization of the tabu search, where hybridization consists in examining a number of solutions from a neighborhood concurrently by several GPUs (multi-GPU). The methodology is de...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملParallel computing using MPI and OpenMP on self-configured platform, UMZHPC.
Parallel computing is a topic of interest for a broad scientific community since it facilitates many time-consuming algorithms in different application domains.In this paper, we introduce a novel platform for parallel computing by using MPI and OpenMP programming languages based on set of networked PCs. UMZHPC is a free Linux-based parallel computing infrastructure that has been developed to cr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JSW
دوره 9 شماره
صفحات -
تاریخ انتشار 2014